60 Contoh Soal Tes SMART GMA Numerical BCA hingga BUMN [+ Jawaban]

Simak 60 soal Tes SMART GMA Numerical BCA hingga BUMN: Aritmatika, Rasio, Persentase, Deret Angka, Soal Cerita, Penalaran Logika.

Dealls
Ditulis oleh
Dealls July 27, 2025

SMART GMA Numerical adalah  salah satu tipe tes psikotes yang sering sekali muncul, apalagi di dunia perbankan dan program MT (Management Trainee). Kalau kamu lagi cari kerja atau daftar program magang, pasti familiar dengan istilah psikotes ini. 

Jenis tes ini tak hanya berisi hitung-hitungan semata, melainkan dapat meninjau dan mengukur kemampuan logis kamu dalam menyelesaikan soal numerik yang tricky.

Bagi kamu yang mengincar posisi di perusahaan besar seperti BCA atau BUMN, tes ini bisa jadi gerbang pertama yang harus dilalui. 

Di artikel ini, kita akan kupas tuntas apa itu SMART GMA Numerical, bentuk soal-soalnya, dan gimana cara belajarnya agar kamu makin siap tempur saat tes nanti.

Apa Itu SMART GMA Numerical?

SMART GMA Numerical adalah bagian dari tes General Mental Ability (GMA) yang dirancang untuk mengukur kecakapan logika numerik kamu.

Tes ini biasanya digunakan dalam seleksi kerja, terutama di industri yang butuh kemampuan analisis kuat seperti perbankan, konsultasi, dan program MT. 

Contohnya seperti SMART GMA Numerical BCA, yang sering dipakai dalam proses seleksi magang atau Officer Development Program (ODP) yang mereka buka.

Jenis soal yang muncul biasanya tidak akan jauh-jauh dari deret angka logis, pecahan, perbandingan rasio, konversi satuan, hingga soal kecepatan dan waktu. 

Tes ini juga mirip dengan numerical reasoning test yang banyak digunakan di luar negeri dalam seleksi kandidat, yang akan menguji bagaimana kamu berpikir cepat dan tepat dalam menyelesaikan persoalan kuantitatif yang beragam. 

Kenapa SMART GMA Numerical Sering Digunakan dalam Rekrutmen? 

Menurut berbagai riset, kemampuan kognitif dan numerik adalah prediktor yang lebih kuat terhadap kinerja kerja dibandingkan pengalaman kerja sebelumnya, latar belakang pendidikan, atau hasil wawancara saja. 

Bahkan, hasil penelitian yang dipublikasikan di American Psychological Association menyebut bahwa General Mental Ability (GMA) sangat berkorelasi dengan performa kerja jangka panjang di berbagai bidang pekerjaan.

Berikut beberapa alasan kenapa SMART GMA Numerical sering digunakan dalam rekrutmen:

1. Prediktor Kinerja Kerja yang Akurat

Tes ini dapat memprediksi seberapa baik kamu akan perform di dalam dunia kerja, yaitu seberapa kamu bisa menganalisis, membuat keputusan logis, dan menyelesaikan masalah yang ada di depan mata.

Hal ini kemudian menjadi latar belakang alasan kenapa perusahaan menganggap hasil SMART GMA lebih relevan dibanding sekadar pengalaman atau gelar akademik saja.

2. Seleksi Lebih Objektif dan Minim Bias

Karena tes numerik seperti ini bersifat kuantitatif, maka perusahaan langsung dapat melihat hasilnya secara objektif. 

Kamu yang berasal dari universitas kecil tetap punya kesempatan yang sama selama hasil tesmu memuaskan, sehingga ini memberikanmu proses seleksi yang lebih adil dan transparan.

3. Efisiensi Waktu dan Biaya Rekrutmen

Karena bisa dilakukan online, tes ini juga bisa menghemat banyak waktu dan biaya buat HR.

Pelamar bisa disaring lebih awal tanpa harus datang langsung ke kantor. Hasilnya pun bisa langsung dianalisis secara otomatis.

4. Kaitan dengan Kebutuhan Kerja Nyata

SMART GMA Numerical juga cocok sekali untukmu yang berada dalam posisi yang melibatkan data, keuangan, analisis, atau logika berpikir. 

Misalnya di bank, startup tech, atau perusahaan konsultan. Nilai tes kamu bisa jadi indikator apakah kamu cocok dengan tantangan kerja yang akan dihadapi.

5. Prediksi Kemampuan Adaptasi dan Pembelajaran

Nilai tinggi di SMART GMA menunjukkan kamu punya kapasitas belajar yang cepat dan bisa beradaptasi dengan perubahan.

Maka hal Ini penting sekali untuk dilakukan, apalagi kalau kamu kerja di industri yang bergerak cepat dan butuh kemampuan belajar mandiri.

6. Meningkatkan Kualitas dan Retensi Karyawan

Perusahaan yang menggunakan tes ini biasanya akan mendapatkan karyawan dengan kualitas lebih tinggi dan loyalitas kerja yang kuat.

Hal ini dapat berdampak langsung ke efisiensi dan pengurangan turnover karyawan di kemudian hari.

Perbedaan SMART GMA Numerical dan SMART GMA Verbal

Perbedaan utama antara SMART GMA Numerical dan SMART GMA Verbal terletak pada jenis kemampuan kognitif yang diukur:

SMART GMA Numerical

SMART GMA Numerical berfokus pada kemampuan analisis numerik dan keterampilan pemrosesan angka, seperti pola bilangan, persentase, operasi matematika dasar, serta kemampuan berpikir logis dan analitis dalam konteks angka dan data kuantitatif. 

Tes ini menuntut kemampuan menghitung, membaca data, dan memahami informasi numerik yang kompleks.

SMART GMA Verbal

SMART GMA Verbal mengukur kemampuan verbal dan penalaran logis, termasuk pemahaman teks, mencari sinonim dan antonim, serta kemampuan menganalisis hubungan antar kata atau konsep secara logis. 

Tes verbal juga mampu menguji kemampuan berpikir kritis dan pemecahan masalah yang berbasis bahasa dan konsep verbal.

Kesimpulan

Secara sederhana, SMART GMA Numerical lebih menitikberatkan pada kemampuan kuantitatif matematis, sedangkan SMART GMA Verbal berfokus pada kemampuan bahasa dan penalaran verbal.

Keduanya sering digabungkan dalam tes rekrutmen kerja karena mewakili dua aspek penting dalam menilai calon karyawan: kemampuan analitis dan kemampuan komunikasi.

Dengan menguji kedua aspek ini, perusahaan bisa mendapatkan gambaran yang lebih menyeluruh tentang potensi kognitif kandidat, baik dalam memecahkan masalah numerik maupun memahami informasi tertulis secara logis.

Maka dari itu, mempersiapkan diri menghadapi kedua jenis tes ini sangat penting agar peluang lolos seleksi semakin besar.

Sebagai bahan latihan, kamu juga bisa berlatih SMART GMA Verbal di artikel berikut: 60 Contoh Soal SMART GMA Verbal untuk Rekrutmen BCA, Pertamina, dll 

Contoh Soal SMART GMA Numerical beserta Jawaban dan Pembahasannya

Berikut adalah 60 contoh soal SMART GMA Numerical beserta jawaban dan pembahasannya, yang dibagi menjadi 6 kategori. 

Setiap bagian memiliki 10 soal dan dikemas dengan gaya yang mirip ujian SMART GMA sebenarnya, yaitu singkat, to the point, dan fokus pada kemampuan berhitung serta logika numerik.

Aritmetika Dasar

Tipe tes ini menguji kemampuan menghitung cepat dan tepat menggunakan operasi dasar seperti penjumlahan, pengurangan, perkalian, dan pembagian.

Contoh soal:

1. Hasil dari 725 + 489 adalah …

A. 1.194
B. 1.214
C. 1.204
D. 1.234

Jawaban: B
Pembahasan: 725 + 489 = 1.214

2. Berapa hasil dari 630 dibagi 9?

A. 70
B. 65
C. 60
D. 75

Jawaban: A
Pembahasan: 630 ÷ 9 = 70

3. 145 dikalikan 3 sama dengan …

A. 435
B. 445
C. 455
D. 465

Jawaban: A
Pembahasan: 145 × 3 = 435

4. Berapa hasil dari 1.200 dikurangi 375?

A. 825
B. 835
C. 845
D. 855

Jawaban: A
Pembahasan: 1.200 - 375 = 825

5. Hasil dari 18 × 12 adalah …

A. 216
B. 212
C. 214
D. 218

Jawaban: A
Pembahasan: 18 × 12 = 216

6. Berapa hasil dari 96 ÷ 8 × 2?

A. 22
B. 24
C. 26
D. 28

Jawaban: B
Pembahasan: 96 ÷ 8 = 12 → 12 × 2 = 24

7. Hasil dari (120 + 80) × 2 adalah …

A. 380
B. 400
C. 420
D. 440

Jawaban: B
Pembahasan: (120 + 80) × 2 = 200 × 2 = 400

8. 1.500 – (400 + 250) = …

A. 850
B. 900
C. 950
D. 1.000

Jawaban: A
Pembahasan: 1.500 – 650 = 850

9. Hasil dari 144 ÷ 12 + 8 adalah …

A. 18
B. 20
C. 22
D. 24

Jawaban: B
Pembahasan: 144 ÷ 12 = 12 → 12 + 8 = 20

10. Hitunglah: (300 × 2) + (100 ÷ 4)

A. 610
B. 625
C. 630
D. 640

Jawaban: B
Pembahasan: 300 × 2 = 600 dan 100 ÷ 4 = 25 → 600 + 25 = 625

Perbandingan atau Rasio

Section yang satu ini menilai pemahaman terhadap hubungan proporsional antara dua nilai, seperti menentukan nilai yang hilang berdasarkan rasio yang diketahui.

Contoh soal:

11. Perbandingan usia Dika dan Rio adalah 4:5. Jika usia Dika adalah 24 tahun, maka usia Rio adalah …

A. 28
B. 30
C. 32
D. 34

Jawaban: B
Pembahasan: Jika 4 bagian = 24, maka 1 bagian = 6 → 5 bagian = 5 × 6 = 30

12. Rasio uang Ani dan Budi adalah 3:2. Jika jumlah uang mereka Rp250.000, maka uang Ani adalah …

A. Rp100.000
B. Rp120.000
C. Rp130.000
D. Rp150.000

Jawaban: D
Pembahasan: Total rasio = 3 + 2 = 5 → 1 bagian = 250.000 ÷ 5 = 50.000 → Ani: 3 × 50.000 = 150.000

13. Perbandingan jumlah kelereng Tomi dan Riko adalah 7:3. Jika selisih jumlah kelereng mereka adalah 40, maka jumlah kelereng Tomi adalah …

A. 80
B. 90
C. 70
D. 110

Jawaban: C
Pembahasan: 7 - 3 = 4 bagian → 1 bagian = 40 ÷ 4 = 10 → Tomi: 7 × 10 = 70

14. Jika perbandingan X dan Y adalah 2:3, dan jumlah keduanya adalah 50, maka nilai Y adalah …

A. 20
B. 25
C. 30
D. 35

Jawaban: C
Pembahasan: 2 + 3 = 5 bagian → 1 bagian = 50 ÷ 5 = 10 → Y = 3 × 10 = 30

15. Dalam suatu lomba, rasio peserta laki-laki dan perempuan adalah 5:4. Jika peserta perempuan berjumlah 36 orang, maka jumlah peserta laki-laki adalah …

A. 40
B. 42
C. 44
D. 45

Jawaban: D
Pembahasan: 4 bagian = 36 → 1 bagian = 9 → Laki-laki = 5 × 9 = 45

16. Jika A : B = 7 : 2 dan jumlah B dan C adalah 24, serta B : C = 2 : 1, maka nilai A adalah …

A. 56
B. 60
C. 63
D. 66

Jawaban: A
Pembahasan: B : C = 2 : 1 → total = 3 bagian → B = 2/3 × 24 = 16 → A = 7/2 × 16 = 56

17. Rasio panjang tali merah dan tali biru adalah 3:5. Jika panjang tali merah adalah 27 cm, maka panjang tali biru adalah …

A. 45 cm
B. 40 cm
C. 42 cm
D. 36 cm

Jawaban: A
Pembahasan: 3 bagian = 27 → 1 bagian = 9 → biru: 5 × 9 = 45

18. Jika rasio a dan b adalah 5:8 dan b = 64, maka nilai a adalah …

A. 35
B. 36
C. 40
D. 45

Jawaban: C
Pembahasan: 8 bagian = 64 → 1 bagian = 8 → a = 5 × 8 = 40

19. Jika rasio X : Y = 9 : 6, sederhanakan rasio tersebut.

A. 3:2
B. 4:3
C. 2:1
D. 5:3

Jawaban: A
Pembahasan: 9 dan 6 sama-sama bisa dibagi 3 → hasil: 3 : 2

20. Jika rasio antara uang Andi dan Beni adalah 4:7 dan Andi memiliki Rp80.000, maka total uang mereka berdua adalah …

A. Rp140.000
B. Rp160.000
C. Rp220.000
D. Rp200.000

Jawaban: C
Pembahasan: 4 bagian = 80.000 → 1 bagian = 20.000 → Total: (4 + 7) × 20.000 = 11 × 20.000 = 220.000

Persentase dan Diskon

Bagian ini mengukur kemampuan menghitung persentase, termasuk perubahan nilai (kenaikan/penurunan) dan potongan harga dalam konteks praktis.

Contoh soal:

21. Jika suatu barang seharga Rp200.000 didiskon 25%, maka harga setelah diskon adalah …

A. Rp140.000
B. Rp145.000
C. Rp150.000
D. Rp155.000

Jawaban: C
Pembahasan: 25% dari Rp200.000 = Rp50.000 → Rp200.000 – Rp50.000 = Rp150.000

22. Harga awal sebuah jaket adalah Rp480.000. Jika diberi diskon 10%, maka harga setelah diskon adalah …

A. Rp430.000
B. Rp432.000
C. Rp440.000
D. Rp450.000

Jawaban: B
Pembahasan: 10% dari 480.000 = 48.000 → 480.000 – 48.000 = 432.000

23. Sebuah barang mengalami kenaikan harga sebesar 20%. Jika harga awalnya Rp250.000, maka harga akhirnya adalah …

A. Rp290.000
B. Rp295.000
C. Rp300.000
D. Rp310.000

Jawaban: C
Pembahasan: 20% dari 250.000 = 50.000 → 250.000 + 50.000 = 300.000

24. Harga sebuah barang turun 15% menjadi Rp340.000. Berapa harga awal barang tersebut?

A. Rp385.000
B. Rp390.000
C. Rp395.000
D. Rp400.000

Jawaban: D
Pembahasan: 85% = 340.000 → 1% = 4.000 → 100% = 400.000

25. Jika gaji seorang karyawan dinaikkan sebesar 12% dari Rp5.000.000, maka gaji barunya adalah …

A. Rp5.500.000
B. Rp5.600.000
C. Rp5.400.000
D. Rp5.300.000

Jawaban: B
Pembahasan: 12% × 5.000.000 = 600.000 → 5.000.000 + 600.000 = 5.600.000

26. Dalam sebuah penjualan, barang senilai Rp80.000 dijual dengan rugi 20%. Berapa harga jualnya?

A. Rp64.000
B. Rp66.000
C. Rp68.000
D. Rp70.000

Jawaban: A
Pembahasan: 20% dari 80.000 = 16.000 → 80.000 – 16.000 = 64.000

27. Jika suatu produk dijual seharga Rp360.000 setelah mendapat diskon 10%, maka harga sebelum diskon adalah …

A. Rp390.000
B. Rp395.000
C. Rp400.000
D. Rp410.000

Jawaban: C
Pembahasan: 90% = 360.000 → 1% = 4.000 → 100% = 400.000

28. Sebuah laptop mengalami penurunan harga 25% menjadi Rp6.000.000. Berapa harga sebelum turun?

A. Rp7.800.000
B. Rp8.000.000
C. Rp7.200.000
D. Rp8.200.000

Jawaban: B
Pembahasan: 75% = 6.000.000 → 1% = 80.000 → 100% = 8.000.000

29. Sebuah celana didiskon 30% dari harga Rp350.000. Berapa harga diskonnya?

A. Rp95.000
B. Rp100.000
C. Rp105.000
D. Rp110.000

Jawaban: C
Pembahasan: 30% × 350.000 = 105.000

30. Sebuah produk dijual Rp225.000 setelah diskon 25%. Berapa harga sebelum diskon?

A. Rp285.000
B. Rp290.000
C. Rp295.000
D. Rp300.000

Jawaban: D
Pembahasan: 75% = 225.000 → 1% = 3.000 → 100% = 300.000

Sedang Apply Kerja?
Coba Dealls untuk Cari Loker Perusahaan Ternama!

button cari lowongan kerja di dealls.png

Deret Angka

Soal deret angka bertujuan menguji logika numerik dengan menemukan pola atau aturan dalam urutan angka untuk menentukan angka berikutnya.

Contoh soal:

31. 2, 4, 8, 16, 32, …

A. 48
B. 54
C. 60
D. 64

Jawaban: D
Pembahasan: Deret ini dikalikan 2 setiap langkah → 32 × 2 = 64

32. 81, 72, 63, 54, …

A. 46
B. 45
C. 44
D. 43

Jawaban: B
Pembahasan: Pola: turun 9 → 81 - 9 = 72, dst. Maka 54 - 9 = 45

33. 1, 1, 2, 3, 5, 8, 

A. 10
B. 11
C. 12
D. 13

Jawaban: D
Pembahasan: Ini adalah deret Fibonacci → 5 + 8 = 13

34. 100, 90, 81, 73, …

A. 66
B. 65
C. 64
D. 63

Jawaban: A
Pembahasan: Pola: -10, -9, -8 → 73 - 7 = 66

35. 3, 6, 11, 18, 27, …

A. 36
B. 37
C. 38
D. 39

Jawaban: C
Pembahasan: Pola selisih: +3, +5, +7, +9 → 27 + 11 = 38

36. 2, 6, 12, 20, 30, …

A. 38
B. 40
C. 42
D. 44

Jawaban: C
Pembahasan: Selisih bertambah: +4, +6, +8, +10 → 30 + 12 = 42

37. 5, 10, 20, 40, …

A. 45
B. 50
C. 60
D. 80

Jawaban: D
Pembahasan: Dikalikan 2 setiap langkah → 40 × 2 = 80

38. 90, 85, 75, 60, …

A. 45
B. 40
C. 50
D. 55

Jawaban: A
Pembahasan: Pola: -5, -10, -15 → 60 - 15 = 45

39. 7, 14, 28, 56, …

A. 98
B. 112
C. 120
D. 130

Jawaban: B
Pembahasan: Deret dikali 2 → 56 × 2 = 112

40. 1, 4, 9, 16, 25, …

A. 30
B. 32
C. 36
D. 49

Jawaban: C
Pembahasan: Ini deret kuadrat: 1², 2², 3², dst → 6² = 36

Soal Cerita Matematika

Dalam soal cerita matematika, kamu diuji kemampuan menerjemahkan situasi dalam bentuk teks ke dalam perhitungan matematis untuk menemukan solusi.

Contoh soal:

41. Seorang pedagang membeli 5 kg jeruk seharga Rp12.500 per kg. Berapa total yang harus dibayar?

A. Rp60.000
B. Rp62.500
C. Rp65.000
D. Rp67.500

Jawaban: B
Pembahasan: 5 × 12.500 = 62.500

42. Harga sebuah buku adalah Rp45.000. Jika Rina membeli 3 buku dan membayar dengan uang Rp150.000, maka berapa uang kembaliannya?

A. Rp10.000
B. Rp15.000
C. Rp20.000
D. Rp25.000

Jawaban: B
Pembahasan: 3 × 45.000 = 135.000 → 150.000 – 135.000 = 15.000

43. Satu dus berisi 24 botol. Jika Andi membeli 3 dus, berapa total botol yang ia miliki?

A. 60
B. 64
C. 72
D. 76

Jawaban: C
Pembahasan: 3 × 24 = 72

44. Sebuah mobil menempuh jarak 240 km dalam 4 jam. Berapa kecepatan rata-ratanya per jam?

A. 50 km/jam
B. 55 km/jam
C. 60 km/jam
D. 65 km/jam

Jawaban: C
Pembahasan: 240 ÷ 4 = 60 km/jam

45. Sebuah restoran menjual 120 porsi makanan dalam 3 hari. Jika jumlah yang dijual setiap harinya sama, berapa porsi per hari?

A. 30
B. 35
C. 40
D. 45

Jawaban: C
Pembahasan: 120 ÷ 3 = 40

46. Seorang petani memanen 75 kg beras dan membaginya ke dalam karung-karung berisi 15 kg. Berapa jumlah karung yang diperlukan?

A. 4
B. 5
C. 6
D. 5

Jawaban: B
Pembahasan: 75 ÷ 15 = 5

47. Harga sebuah sepatu setelah diskon adalah Rp360.000. Jika diskon yang diberikan sebesar Rp40.000, maka harga sebelum diskon adalah …

A. Rp400.000
B. Rp395.000
C. Rp390.000
D. Rp385.000
Jawaban: A
Pembahasan: 360.000 + 40.000 = 400.000

48. Doni memiliki 8 kotak pensil, masing-masing berisi 12 pensil. Berapa total pensil Doni?

A. 84
B. 96
C. 98
D. 102

Jawaban: B
Pembahasan: 8 × 12 = 96

49. Dalam satu pekan, seorang karyawan bekerja 5 hari dan setiap hari selama 8 jam. Berapa total jam kerja dalam satu minggu?

A. 35
B. 36
C. 40
D. 45

Jawaban: C
Pembahasan: 5 × 8 = 40 jam

50. Jika 1 liter minyak goreng harganya Rp18.000, maka berapa harga untuk 2,5 liter?

A. Rp42.000
B. Rp43.000
C. Rp45.000
D. Rp46.000

Jawaban: C
Pembahasan: 18.000 × 2,5 = 45.000

Logika Penalaran

Soal logika penalaran mengukur kemampuan berpikir logis dan menarik kesimpulan berdasarkan informasi yang tersedia, baik dalam bentuk kata maupun pola.

Contoh soal:

51. Jika semua A adalah B, dan semua B adalah C, maka:

A. Semua A adalah C
B. Semua C adalah A
C. Tidak semua A adalah C
D. A bukan bagian dari C

Jawaban: A
Pembahasan: Jika A ⊆ B dan B ⊆ C, maka A ⊆ C. Jadi, semua A adalah C.

52. Beberapa X adalah Y. Semua Y adalah Z. Maka, yang pasti benar adalah:

A. Semua X adalah Z
B. Beberapa X adalah Z
C. Semua Z adalah X
D. Tidak ada hubungan antara X dan Z

Jawaban: B
Pembahasan: Karena beberapa X adalah Y, dan semua Y adalah Z, maka sebagian X pasti juga merupakan bagian dari Z.

53. Jika hari ini adalah Jumat, maka 10 hari lagi adalah:

A. Senin
B. Selasa
C. Minggu
D. Senin

Jawaban: D
Pembahasan: Jumat + 10 hari = Minggu (3 hari kemudian) → Jumat + 7 = Jumat + 3 = Senin

54. Ani lebih tua dari Budi. Budi lebih muda dari Cici. Maka yang pasti benar adalah:

A. Cici lebih tua dari Ani
B. Ani lebih tua dari Cici
C. Cici lebih muda dari Budi
D. Tidak bisa ditentukan

Jawaban: D
Pembahasan: Urutan hanya menunjukkan Ani > Budi < Cici. Tidak ada perbandingan langsung antara Ani dan Cici.

55. 5, 10, 20, 40, …

A. 50
B. 60
C. 70
D. 80

Jawaban: D
Pembahasan: Pola: ×2 → 5×2=10, 10×2=20, 20×2=40, 40×2=80

56. Sebuah angka dikalikan 4 lalu hasilnya dikurangi 6 adalah 30. Berapa angkanya?

A. 9
B. 10
C. 12
D. 14

Jawaban: A
Pembahasan: 4x – 6 = 30 → 4x = 36 → x = 9

57. Dalam satu kotak terdapat 3 bola merah, 2 bola biru, dan 5 bola hijau. Berapa kemungkinan mengambil satu bola bukan biru?

A. 3/10
B. 2/10
C. 8/10
D. 5/10

Jawaban: C
Pembahasan: Bola bukan biru = merah + hijau = 3 + 5 = 8 → Total bola = 10 → Peluang = 8/10

58. Rina memiliki dua kali jumlah buku lebih banyak dari Sinta. Jika Sinta memiliki 8 buku, berapa buku yang dimiliki Rina?

A. 14
B. 15
C. 16
D. 18

Jawaban: C
Pembahasan: Rina = 2 × 8 = 16

59. Dalam satu kelas terdapat 12 siswa laki-laki dan 18 siswa perempuan. Berapa perbandingan siswa laki-laki terhadap total siswa?

A. 2:5
B. 3:5
C. 2:3
D. 4:5

Jawaban: A
Pembahasan: Total siswa = 12 + 18 = 30 → 12:30 = 2:5

60. Jika 3 kotak berisi total 27 apel, dan setiap kotak berisi jumlah yang sama, berapa isi satu kotak?

A. 7
B. 8
C. 9
D. 10

Jawaban: C
Pembahasan: 27 ÷ 3 = 9

Sedang Coba Apply Kerja? Yuk, Coba Dealls untuk Lamar Loker ke Perusahaan Ternama! 

Tes SMART GMA Numerical sering jadi gerbang awal dalam proses seleksi kerja, apalagi di beberapa perusahaan besar seperti BCATelkom Indonesia, atau Pertamina Hulu Energi

Artinya, kalau kamu serius ingin lolos ke tahap selanjutnya, kamu juga harus persiapkan latihan dan kebutuhannya mulai dari sekarang, termasuk cari platform terbaik buat apply kerja secara online.

loker-top-company.png
Lowongan Kerja Top Company di Dealls

Nah, daripada bingung mulai dari mana, langsung saja daftar lewat Dealls. Di sini kamu bisa lamar ke 100.000+ perusahaan ternama, lengkap dengan fitur AI CV Reviewer buat bantu kamu lolos screening awal. 

Saatnya Curi Start Kariermu
Apply Loker Terbaru di Dealls!

button lamar loker lewat dealls.png
Tips Pengembangan Karir
Bagikan

Lamar ke Lowongan Kerja Terbaru Setiap Harinya